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Abstract
Rationale The main reason for the current lack of effective
treatments for the core symptoms of autism is our limited
understanding of the biological mechanisms underlying this
heterogeneous group of disorders. A primary value of genetic
research is enhancing our insight into the biology of autism
through the study of identified autism risk genes.
Objectives In the current review we discuss (1) the genes and
loci that are associated with autism, (2) how these provide us
with essential cues as to what neurobiological mechanismsmay

be involved, and (3) how these mechanisms may be used as
targets for novel treatments. Next, we provide an overview of
currently ongoing clinical trials registered at clinicaltrials.gov
with a variety of compounds. Finally, we review current ap-
proaches used to translate knowledge derived from gene dis-
covery into novel pharmaceutical compounds and discuss their
pitfalls and problems.
Conclusions An increasing number of genetic variants asso-
ciated with autism have been identified. This will generate
new ideas about the biological mechanisms involved in au-
tism, which in turn may provide new leads for the develop-
ment of novel pharmaceutical compounds. To optimize this
pipeline of drug discovery, large-scale international collabo-
rations are needed for gene discovery, functional validation of
risk genes, and improvement of clinical outcome measures
and clinical trial methodology in autism.

Keywords Autism . Genes . Neurobiology . Pharmaceutical
compounds . Biomarker

Introduction

While both Kanner and Asperger, in their first descriptions of
autism and Asperger syndrome suggested the role of “inborn”
or heritable factors (Frith 1991; Kanner 1968), only since the
mid-1990s has twin data provided unequivocal evidence for a
substantial role of heritable factors in the causation of autism
(Bailey et al. 1995). It took at least another decade before the
first specific genetic variants were identified, with robust and
replicable proof of association with autism (Freitag 2007;
Devlin and Scherer 2012). It is now becoming increasingly
clear that the complex genetic architecture of autism is the
principle culprit for the delay between establishing the herita-
bility of autism and the actual identification of causal and
contributing genetic variants. In addition to its genetic
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heterogeneity, autism, although a well-recognizable clinical
syndrome, is also marked by a high degree of phenotypic
heterogeneity. This implies that autistic patients differ from
each other with regard to the nature and severity of symptoms
in the domains of social interaction, communication, and
repetitive behaviors. Therefore, while the heritability of au-
tism is high (Bailey et al. 1995), the proportion of patients in
whom causal or contributing genetic variants are identified, is
limited. To date, this gap between the expected and observed
variance explained by genetic variation is still wide, common-
ly referred to as “the missing heritability” (Manolio et al.
2009). Autism is a group of clinically and etiologically het-
erogeneous disorders that have a large number of symptoms in
common. These symptoms are grouped into two domains: (a)
abnormal social interaction and verbal and nonverbal commu-
nication, and (b) stereotyped and rigid patterns of behavior,
and unusual sensory reactions (American Psychiatric
Association 2013). The clinical variation is broad ranging
from patients with mild symptoms and relatively spared lan-
guage to patients with severe symptoms often accompanied
by intellectual disability and epilepsy. Between 0.5 and 10 %
of individuals with autism show unusual abilities, ranging
from splinter skills such as the memorization of trivia to the
extraordinarily rare talents of prodigious autistic savants.
Patients with autism have also increased rates of somatic
diseases, such as problems of the digestive tract (Buie et al.
2010) and immunological abnormalities (Gesundheit et al.
2013).

The present article will focus on probably the most important
aim of genetic research in autism, i.e., to generate unique bio-
logical information about the molecular mechanisms involved.
In turn, this can be used to formulate entirely novel hypotheses
about the relevant gene–protein pathways and subsequently
about the development of new pharmaceutical compounds.

To date, medication is available to manage troublesome
and disruptive behaviors frequently associated with autism
such as irritability, self-injury, anxiety, aggressive behaviors,
hyperactivity, impulsivity, and inattention (Dove et al. 2012).
However, there is no effective medication to improve the core
deficits of autism, i.e., impairments of social interaction and
verbal and nonverbal communication. By far, the most impor-
tant reason for the lack of effective medication for autism is
our limited understanding of its molecular and neurobiologi-
cal base. Hence, drug development has lacked well defined
molecular targets and consequently was limited to a
phenotype-based approach where phenotype-modifying char-
acteristics of potential compounds are tested, often without a
priori insight of the biological mechanisms involved
(Waldman and Terzic 2013). This is unlike other areas in
medicine, where new pharmaceutical interventions have been
developed on the basis of known disease mechanisms. For
example, medications that lower blood pressure have typically
been designed to act on certain pathways involved in the

pathophysiology of hypertension, such as renal salt and water
absorption and vascular contractility. Treatments for diabetes
mellitus are aimed at improving insulin release from the
pancreas and sensitivity of the muscle and fat tissues to insulin
action. Disease mechanisms however are unknown for autism,
and in this context, for any other mental disorder. In this
respect, genetic research may prove to be most valuable,
mainly because the identification of autism-associated genetic
variants can provide leads towards disease mechanisms in-
volved, and biological targets for drug development.

However, we should be aware that gene discovery is one
thing, but that, once a risk gene has been identified, subsequent
studies are required to elucidate the timing and localization of
expression as well as the function of the protein it encodes.
Next, the effects should be studied of a functional change of the
identified gene on the relevant biological pathways and how
this contributes to our understanding of the etiology of autism.
Translating knowledge about disrupted gene–protein pathways
into personalized molecular therapies undoubtedly represents
the major long-term goal of genetic investigations in autism.
Personalized medicine refers to the selection and tailoring of a
specific treatment for an individual patient, based on genetic
and/or other biomarkers profiles, including transcriptomics,
proteomics, and metabolomics (see Ruggeri et al., this issue).
Importantly, to fulfill this ambition, strong international collab-
oration is a necessity in order to link gene discovery to biolog-
ical knowledge, provide rationale for potential drug targets, and
pave the road for efficient (pre)clinical trials.

Currently available psychotropic medications are based,
except for few instances, on affecting the activity of the major
classic neurotransmitters dopamine, noradrenaline, and sero-
tonin through binding to presynaptic or postsynaptic receptor
systems, inhibition of reuptake through binding to the trans-
porters, or inhibition of enzymatic breakdown. However, the
actions on these major neurotransmitter systems are not trans-
lated into therapeutic changes of the core symptoms of autism,
indicating that these neurotransmitter systems do not affect the
central pathophysiological mechanisms of the social and com-
municative symptoms of autism (Buitelaar 2003). Hence, new
effective medication probably will tap into alternative, novel
mechanisms, such as interacting with abnormal intracellular
pathways. This challenging move from traditional psycho-
pharmacology to novel, more personalized molecular thera-
pies has begun in very recent years, primarily stimulated by
two developments.

First, the discovery of genetic disorders with neurodevelop-
mental phenotypes, whose pathophysiology could be eluci-
dated sufficiently to allow the design of targeted molecular
treatments (see Section 4). Importantly, these lines of investi-
gation were always triggered by the identification of the genes
affected by mutations, triplet repeat expansions or copy num-
ber variations (CNVs), and ultimately producing the clinical
phenotype;
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Second, the correction of neuropathological and behavioral
abnormalities in rodent models of these disorders by genetic or
pharmacological strategies, not only during critical periods in
prenatal neurodevelopment but also in the adult animal
(Ehninger et al. 2008a, b; Guy et al. 2007; Tropea et al. 2009;
van Woerden et al. 2007), for review see Ehninger et al.
(2008a). The latter results support the hypothesis that autism
is a disorder of synaptic functioning and that these functional
abnormalities in synaptic connectivity may be reversible or at
least modifiable (Ecker et al. 2013). This spurs hope in person-
alized molecular treatments yielding functional recovery of
patients with autism well beyond the first few years of life.

In this article, we will first review the genetic variants
associated with autism that have turned out to be promising
for further functional validation and translation study.
Parameters used to select such promising genes for review in
this article were (1) statistical association of the gene with
autism based on genetic studies, and convergence of the gene
with other genes in a shared (putative) biological mechanism,
and (2) recently completed and ongoing clinical trials with
compounds that were developed on the basis of biological
knowledge inferred from the association of these genes with
autism. Next, we will describe more in detail the various steps
and techniques involved in the process of validation and
translation to the development of promising novel compounds
in the treatment of autism and will discuss pitfalls and prob-
lems of these translational steps. We end with a plea for the
necessity of international collaborative networks to allow both
cross-disciplinary targeted studies as well as efficient orches-
tration of (pre)clinical trials of potential compounds.

Methods

Relevant publications were retrieved via Pubmed using query
terms such as “autism” and “autist*” or “neurodevelopment”
combined with “genetics” or “therapy” or “pharmacologic,”
and subsequent searches were undertaken using combination
of these terms with identified gene or protein names men-
tioned in the retrieved papers (e.g., “oxytocin” and “autism”).
In parallel, we searched clinicaltrials.gov (august 2013) for
studies on autism (419 studies), which we restricted to inter-
ventional studies (320) and subsequently to interventional
studies involving drugs, which generated 274 results. Given
our focus on the link between identified genetic variants in
autism and the development of novel pharmaceutical com-
pounds, we retained from our Pubmed search only those genes
that have contributed to the theoretical rationale upon which
pharmaceutical compounds are tested in any of these 274
drug-intervention trials registered in clinicaltrials.gov. This
strategy yielded 36 drug intervention trials that are listed in
Table 1. Finally, references cited in identified articles were
used for further retrieval of relevant papers.

Myriad of genetic etiologies, but limited number of shared
biological pathways

Our current understanding of the genetic underpinnings of
autism implicates a highly complex architecture. The ob-
served familial clustering and the increased concordance in
monozygotic twins indicate a high heritability of this
neurodevelopmental disorder. Common genetic variants are
likely relevant (Klei et al. 2012) although genome wide asso-
ciation studies thus far have been less successful in identifying
significant associated loci in comparison to schizophrenia
(Devlin et al. 2011; Vorstman et al. 2013). The role of rare
variants, including CNVs (Pinto et al. 2010) and single nucle-
otide variants (SNVs), (Sanders et al. 2012) has been firmly
established in a host of studies during the past several years
(Geschwind 2011). Both classes of common and rare variants
have incited two different architectonic models for autism that
often have been opposed against each other; the common-
disease-common-variant and the common-disease-rare-vari-
ant model. In reality however, it appears that both models
are not mutually exclusive (Visscher et al. 2012) and a spec-
trum of genetic variants is likely to exist ranging from rare to
common with variable effect sizes.

The high number of genetic variants that have been iden-
tified over the last years as either causative or contributing to
autism indicates a substantial genetic heterogeneity of the
disorder. Indeed, it has been suggested that autism is in reality
the shared phenotypic expression of a myriad of different
disorders (Waterhouse 2008). Recently, an overview of over
100 genetic loci with evidence in support of association with
autism was published (Betancur 2011), while based on the
findings of recent sequencing studies the total number of risk
genes for autism was estimated to be well over 1,000 (Sanders
et al. 2012; O'Roak et al. 2012a). Does this, theoretically,
imply that the cure for autism will require the development
of a unique pharmacological agent for every single genetic
cause of autism that has been identified so far?

Fortunately, biological functions are virtually always the
resultant of the concerted action of multiple genes. Thus,
many different genes seem to converge into one a relatively
limited number of biological pathways (Berg and Geschwind
2012; Poelmans et al. 2013). Consequently, this limited num-
ber of abnormal biological pathways leading to autism signif-
icantly increases the chances of finding new effective mole-
cules. Thus, two autistic patients may have genetic variants
affecting entirely different genes, while sharing the same
compromised biological pathway. Both patients could
then, in theory, benefit from the same therapeutic agent
(see Fig. 1). In addition, it is possible that the phenotypic
heterogeneity of autism may be reduced when subgroups
within the general autism spectrum disorder (ASD) population
are considered, based on shared biological etiology (Bruining
et al. 2010)
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At present, research findings are consistent with this model.
For instance, TSC1 , TSC2 (Prather and de Vries 2004), PTEN
(Zhou and Parada 2012), and NF1 (Walsh et al. 2013) are
different genes independently associated with autism, but they
are biologically closely related as partners in the mTOR pathway
(Ehninger 2013). Likewise, previous studies have shown the
involvement of CHD7 (Hartshorne et al. 2005; Johansson et al.
2006) and GRIN2B (Yoo et al. 2012) in autism. In addition, a
recent multiplex sequencing study revealed recurrent mutations
in GRIN2B , CHD8 , DYRK1A, TBR1, and TBL1XR (O'Roak
et al. 2012b). Interestingly, these genes were all found to interact
in the B-catenin-chromatin-remodeling protein network (O'Roak
et al. 2012a). These and other examples indicate that while the
genetic heterogeneity of autism is likely to be important, the
biological heterogeneity of autism may be much more limit-
ed, providing shared biological pathways as a point of depar-
ture for the development of pharmaceutical interventions.

From genes to biology

Biological insights obtained through the study of known
genetic disorders associated with autism

For a number of neurodevelopmental disorders that express
the autism phenotype, causative genetic factors have been
established (Vorstman and Ophoff 2013). Such disorders cur-
rently under trial with personalized therapies include Rett
syndrome, Fragile X syndrome, tuberous sclerosis, and autism
associated with macrocephaly, caused by PTEN mutations
(Table 1). In the next sections, we will briefly review genetic

findings and ongoing clinical trials in a number of these
conditions

Rett syndrome

Approximately 70 % of girls affected with Rett syndrome
carry disruptive mutations in the MECP2 gene on Xq28.
Their clinical phenotype displays, after an initial period of
normal development, growth arrest at 6–18 months resulting
in microcephaly, regression of acquired verbal and social
skills, mental retardation, typical “hand wringing” stereoty-
pies, seizures, scoliosis, dyspraxia, and other symptoms. The
dysregulation produced by the inactivation of methyl-CpG-
binding protein 2 (MECP2) is complicated; as a transcription
factor, it regulates the expression of multiple target genes and
may also modulate RNA splicing processes (Na et al. 2013).
Despite the complexity of these epigenetic effects, the most
representative functional outcomes, i.e., impaired dendritic
branching, reduced numbers of dendritic spines, and de-
creased synaptic contacts, represent a plausible treatment
(Calfa et al. 2011).

In the mouse models of these genetic mutations, treatment
with insulin-like growth factor I (1–3)IGF-1, through its stim-
ulatory effect on neuronal cell survival and synaptic maturation,
produces a partial, yet substantial recovery in dendritic branch
length and synaptic counts, with significant improvement or
even normalization of behavioral deficits present in untreated
Mecp2 knock-out (KO) mice (Tropea et al. 2009). Based on
this evidence and on the approved use of this drug in the
pediatric population to treat body growth deficits due to insuf-
ficient production of IGF1, therapeutic trials with (1–3)IGF1

Fig. 1 Diagram representing the link between genetic studies in autism
and the targeted development of novel pharmaceutical compounds. Au-
tism is thought to be genetically heterogeneous; studies are identifying a
growing number of genes involved in the etiology of this disorder. Based
on biological information, such as function and expression profile, these

“autism genes” are linked together in gene networks, which in turn are
involved in biological mechanisms. Hence, the effect of genetic variants
becomes apparent in the efficacy of specific biological mechanisms.
Pharmacogenetic strategies consist of the correction or compensation of
the deficient biological mechanism

Psychopharmacology



(also known as Mecasermin or Increlex) are currently under
way (see Table 1).

Fragile X

Perhaps, the most representative for our current efforts toward
developing personalized molecular therapies in autism is
Fragile X syndrome (Kremer et al. 1991). The lack of protein
encoded by FMR1 (FMRP) consequent to the triplet repeat
expansion present at the Fragile X locus disrupts the concerted
translation of FMRP-bound mRNAs, especially relevant to
dendritic spine function (Ashley et al. 1993; Eberhart et al.
1996). One of the main consequences of this disruption con-
sists in excessive protein synthesis driven by stimulation of
metabotropic glutamate receptors (mGluR1/5), resulting in
the downregulation of α-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid (AMPA) receptors through internali-
zation from the cell surface (Huber et al. 2002; Bear et al.
2004). Blocking mGluR5 transmission using either genetic
(Dolen et al. 2007) or pharmacological means reverses many
abnormal neurochemical, neuroanatomical, and behavioral
features present in FMRP-deficient mice (Levenga et al.
2011; de Vrij et al. 2008; Yan et al. 2005; Su et al. 2011).
Several newer compounds with variable antagonistic effects
on mGluRs are currently under trial, including Fenobam,
STX107, STX209 also known as Arbaclofen (a gamma-
aminobutyric acid (GABA)-B receptor agonist), AFQ056 also
known as Mavoglurant, and RO4917523 (Table 1). Of note,
the STX209 trial was recently terminated because of insuffi-
cient evidence for treatment effects on clinical endpoints.

At least one randomized, double-blind, placebo-controlled
study of Fragile X patients treated with AFQ056 provided
encouraging results, but only in patients with complete FMR1
promoter methylation, and with the caveat of resulting from a
post-hoc, rather than from a pre-defined endpoint analysis
(Jacquemont et al. 2011). Therefore, further clinical trials are
required to establish whether mGluR5 antagonism can exert
relevant positive effects on core autism symptoms.
Nonetheless, in theory, effects of mGluR5 antagonism may
extend beyond Fragile X. For Black and Tan BRachyury mice,
an inbred strain whose phenotype encompasses the more close-
ly resembling human autism deficits (Moy et al. 2007), 2-
methyl-6-(phenylethynyl)pyridine, an antagonist of mGLuR5,
also improved stereotypic behaviors (Silverman et al. 2010)
and ampakine, a positive modulator of the AMPA receptor,
enhanced social interaction (Silverman et al. 2013)

The protein mammalian target of rapamycin mTOR pathway
(mTOR)

Another pathway wherein different genes involved in autism
converge is the mTOR pathway. The central hub in this path-
way is the protein mammalian target of rapamycin which forms

a complex with other proteins (mTOR complex 1, mTORC1).
Rapamycin is a natural macrolide produced by bacteria; it was
originally developed as an antifungal agent but became known
for its immunosuppressant and antiproliferative actions. The
mTOR pathway physiologically links nutrient availability to
body growth by regulating protein translation rates and hence
cell proliferation (Ma and Blenis 2009). This pathway is neg-
atively modulated by four tumor suppressor genes all known to
yield autism phenotypes when inactivated: the TSC1 /TSC2
heterodimeric complex, PTEN , and NF1 .

Dominant mutations of TSC1 or TSC2 are responsible for
tuberous sclerosis, characterized by abnormal neuronal cell
growth leading to the formation of “tuber-like” nodules in the
brain (but glial brain tumors are also frequent) and sebaceous
adenomas in the skin. Interestingly, the degree of cognitive
impairment and the presence of autistic traits often associated
with tuberous sclerosis in humans and in rodent models do not
correlate with tuber number (Numis et al. 2011), as much as
with dysregulated mTOR signaling. Similarly, somatic PTEN
mutations have been identified in a variety of tumors, while
germline mutations can result in various conditions (Cowden,
Bannayan-Riley-Ruvalcaba syndrome, Proteus, and Proteus-
like syndromes), as well as in cognitive impairment and/or
autistic disorder accompanied by prominent macrocephaly and
by macrosomy (Eng 2003; Goffin et al. 2001; Butler et al.
2005). Remarkably, postnatal rapamycin administration to
TSC mice models leads to a reversal of cognitive deficits
including spatial learning and context discrimination, paralleled
by improvements in neuroanatomical deficits including reduc-
tion of brain size (Ehninger et al. 2008b). Recently, everolimus,
a rapamycin derivative, was demonstrated to achieve primary
endpoints in a double-blind, placebo-controlled trial of TSC
patients on efficacy for reduction of subependymal giant cell
astrocytomas (Franz et al. 2013). This seminal phase 3 clinical
trial demonstrates the response of subependymal giant cell
astrocytomas to everolimus. Even though in this trial no autism
or behavioral endpoints were measured, it provides an encour-
aging example of how detailed knowledge of genetic and
molecular abnormalities can pave the way to target specific
pathways leading to improved neurological outcomes in TSC
patients. However, key secondary endpoint such as reduction in
seizure frequency was not significantly altered, and thus unfor-
tunately, no conclusions could be drawn with regard to other
neuropsychiatric endpoints. Similar improvements can be
achieved in Pten KO mouse both at the cellular, cytoarchitec-
tonic, and behavioral levels by administration of rapamycin
(Zhou and Parada 2009).

Intriguingly, the functional effects of the loss of FMRP in
Fragile X does not only include excessive mGluR1/5 stimu-
lation (discussed above) but also dysregulation of mTORC1
(Sharma et al. 2010; Qin et al. 2005; Hoeffer et al. 2012). The
p70 ribosomal S6 kinase 1 (S6K1) is a common downstream
effector of mTORC1 signaling and plays a direct role in
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regulating translation. Recently, double KO mice were gener-
ated where S6k1 was deleted from Fmr1 KO background
(Bhattacharya et al. 2012). Deletion of S6k1 corrected exag-
gerated protein synthesis in the hippocampus of the Fragile X
model mice and normalized enhanced mGluR-mediated long-
term depression (LTD). LTD of excitatory synaptic strength is
an important mode of action of mGLURs (Luscher and Huber
2010). In addition, the S6k1 deletion improved several behav-
ioral abnormalities, including social anxiety, impaired cogni-
tion, and behavioral inflexibility, and prevented immature
dendritic spine morphology. Moreover, in these double KO
mice, there was a reversal of peripheral Fragile X pathologies
not addressed by mGLUR5-targeted pharmaceutics, including
reduction in weight gain, and macro-orchidism.

Neurofibromatosis is caused by mutations affecting
NF1 , causing a dysfunction of neurofibromin. As a result,
Ras activity is abnormally enhanced and the normal inhib-
itory effect of the TSC1 /TSC2 complex of mTOR is re-
duced (Gipson and Johnston 2012). Cognitive deficits ob-
served in Nf1 KO mice were normalized upon lovastatin
treatment, a potent inhibitor of Ras activity (Li et al. 2005).
A trial with this compound in neurofibromatosis is under-
way (Table 1).

Identifying novel targets within the mTOR pathway for
pharmacological intervention is critical and could allow differ-
entiated therapies for autism. Given the regulatory function of
themTOR pathway on protein synthesis, it is not surprising that
mTORC1 inhibition leads to multiple pleiotropic actions in-
cluding the stimulation of autophagy. Therefore, the challenge
is to develop pharmacological interventions that interact with
this pathway in a sufficiently specific manner. For example,
specific inhibitors of p70 ribosomal S6 kinase 1 (S6K1) or
pharmacological inhibition of eIF4E activity (a translational
activator in mTOR pathway) could result in specific inhibition
of the translational dysfunction observed in both mice models
and patients with autism. Another putative molecular target in
the mTOR pathway is the GTPase Rheb (Ras homologue
enriched in brain), which functions as a switch between the
heterodimeric complex of TSC1 or TSC2 and mTOR.
Inactivation of Rheb by TSC1 or TSC2 prevents overactivation
of mTOR.

A final chapter regards immune-related therapies in autism
and in Fragile X (Table 1). These will not be dealt in detail
here because although likely dependent upon mutations or
CNVs affecting immune genes, these genetic abnormalities
have not been clearly defined to date. Nonetheless, the ab-
normal activation of the immune system in autism and
particularly of its innate components (Vargas et al. 2005;
Garbett et al. 2008) as well as the excessive expression and
activity of matrix metalloprotease 9 (MMP9 ) in Fragile X
(Siller and Broadie 2012) have also led newly proposed
molecular treatment strategies which are currently under
scrutiny (Table 1)

Genetic variants, including copy number variants
and common variants associated with autism,
can further our biological understanding

In addition to the rare genetic disorders that indicate the
relevance of mGLURs and the mTOR pathway in autism,
there are more clues that can be obtained from genetic studies.
Common and less rare genetic variants, including copy num-
ber variants, associated with an increased risk of autism that
may reveal other avenues where genetics can translate to
therapies include variants in OXTR , GABR , and SHANK3 .

Oxytocin is a nine-amino acid peptide synthesized in the
hypothalamus. Apart from regulating lactation and uterine
contraction, oxytocin acts as a neuromodulator in the central
nervous system (Lucht et al. 2009; Yamasue et al. 2009). Both
animal experiments and clinical research have confirmed the
role oxytocin plays in social and repetitive behaviors (Green
and Hollander 2010). Therefore, the oxytocin systemmight be
potentially involved in the pathogenesis of autism, and the
human oxytocin receptor (OXTR) gene is regarded as a prom-
ising candidate gene to study.

Indeed, family-based and population-based association tests,
SNPs and haplotypes inOXTR have been reported to confer risk
for autism in different ethnic groups, with reported effect sizes
up to 1.4 (odds ratio) (Liu et al. 2010; Li et al. 2012; Lerer et al.
2008; Jacob et al. 2007; Wu et al. 2005), although the associa-
tion has not been consistently replicated (Tansey et al. 2010), as
predicted for a complex disorder with heterogeneous underpin-
nings like autism. Furthermore, a recent study identified signif-
icant increases in the DNA methylation status of OXTR in
peripheral blood cells and temporal cortex, as well as decreased
expression of OXTR mRNA in the temporal cortex of autism
cases, suggesting that epigenetic dysregulation may be involved
in the pathogenesis of autism (Gregory et al. 2009). Given the
genetic and functional evidence in support of the involvement
the oxytocin pathway in autism, potential therapeutic effects of
oxytocin administration is explored in several studies
(Tachibana et al. 2013; Anagnostou et al. 2012) (Table 1).

GABA is the chief inhibitory neurotransmitter in the brain,
acting by binding to a GABA receptor. The receptor is a
multimeric transmembrane receptor that consists of five sub-
units arranged around a central pore. The GABA receptor
subunits are homologous, but are both structurally and func-
tionally diverse (Menold et al. 2001). Of the GABA receptor
subunit genes, GABRB3 , GABRA5 , and GABRG3 are local-
ized to chromosome 15q11–q13, one of the most complex
regions in the genome involved with genome instability, gene
expression, imprinting, and recombination (Martin et al. 2000).

Several lines of evidence strongly suggest that this region is
implicated in autism. Both deletions and duplications of 15q11–
q13 are associated with autism (Vorstman and Ophoff 2013) and
a significant peak encompassingGABRG3 was detected inmore
than one linkage study (Cook et al. 1998; Kim et al. 2006; Yoo
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et al. 2009; Buxbaum et al. 2002). In addition, results of several
studies indicate association of markers in this region with autism
(Menold et al. 2001; McCauley et al. 2004; Ma et al. 2005).
However, these findings are not replicated consistently (Martin
et al. 2000; Maestrini et al. 1999; Curran et al. 2005).
Interestingly, the mouse model for human 15q11–q13 duplica-
tion demonstrated autistic features (Takumi 2010; Nakatani et al.
2009). Based on the hypothesis that GABAergic signaling may
be altered in autistic patients, with the persistence of “immature”
GABA receptor subunit compositions yielding excitatory, rather
than inhibitory, effects, bumetanide, a diuretic that reinforces
GABAergic inhibition through the reduction of intracellular
chloride ion levels, is being examined with promising initial
results (Lemonnier et al. 2012).

Human studies exploring the rate of 22q13 deletions esti-
mate the frequency of 22q13 deletion in 0.5–1 % of in large
samples with autism (Geschwind 2009). The convergence of
early case reports on cytogenetic abnormalities in autistic pa-
tients indicated 22q13 as a potential region of interest
(Vorstman et al. 2006) and genetic studies have reported the
identification of several mutations/rare variants in the SHANK3
gene in autistic patients (Wilson et al. 2003; Moessner et al.
2007; Gauthier et al. 2009). The clinical phenotype of
22q13 deletion/Phelan-McDermid syndrome includes hy-
potonia, neurodevelopmental delay including absent to
severely delayed speech, autistic behavior, and minor facial
dysmorphisms (Phelan and McDermid 2012) and is thought
to be caused by a haploinsufficiency of SHANK3 .

SHANK3 is a large synaptic scaffolding protein withmultiple
protein–protein interaction domains important in glutamatergic
synapses including the cortical–striatal synapses. Interestingly,
abnormalities similar to those observed in the mouse model of
the MECP2 inactivation, i.e., dendritic abnormalities, are also
observed in Shank3 KOmice, rodent models of 22q13 deletion,
both due to inactivation of the Shank3 gene (Bozdagi et al. 2010;
Yang et al. 2012). The protein encoded by SHANK3 is critical to
the actin-dependent formation of post-synaptic dendritic spine
formation in glutamatergic excitatory synapses (Durand et al.
2012). Dendritic spines are the major site of communication for
excitatory synapses in the nervous system. Dynamic changes in
the configuration of actin filaments meshwork lead to the
forming and reshaping of spines that are essential for synaptic
plasticity (Matus et al. 1982; Kiraly et al. 2010;Matus 2000) The
postsynaptic membrane on which the ionotropic (AMPA and
NMDA) and metabotropic (mGLuR) glutamate receptors reside
is anchored in the post-synaptic density (PSD). In the organiza-
tion of the PSD, the scaffolding proteins (in particular PSD95
and the SHANK proteins) play a central role and link the PSD to
the filamentous actin network that extends further down into the
spine cytoplasm (Verpelli et al. 2012; Boeckers 2006). This
organization allows variations in synaptic activity to be trans-
mitted via the PSD in order to regulate dendritic spine mor-
phology by altering actin filament configuration. In addition

to SHANK3 , many other autism-related genes converge in this
“synaptic-plasticity” pathway, including NRXN1 (Bucan et al.
2009; Kim et al. 2008; Marshall et al. 2008; Glessner et al.
2009) (presynapse), NLGN3, NLGN4 (Jamain et al. 2003),
TRKB (Correia et al. 2010) (post-synaptic membrane),
DLGAP2 , SYNGAP1 (Pinto et al. 2010), SHANK1 and
SHANK2 (Berkel et al. 2010; Leblond et al. 2012) (PSD and
scaffold genes),DIAPH3 (Vorstman et al. 2011), and BAIAP2
(Guy et al. 2007) (actin filament regulation). The results of
these and other studies indicate that dysfunction of
excitatory synapses may be one of the pathways into which
multiple different genetic variants identified in autistic patients
converge (Bourgeron 2009).

From biology to novel pharmaceutical interventions

Documenting that a rare or common genetic variant is significant-
ly associated with autism is nothing more than the beginning of a
long and complicated process towards the development of an
eventually new medication. For most autism genes, there is no
conceptual knowledge about the molecular and cellular mecha-
nisms involved and about how these may lead to abnormal
cognition and behavior. To gain insight into these mechanisms,
a multi-level (molecule, molecular network, synapse, neural net-
work, behavior) andmulti-systems (in vitro and in vivo) approach
has to be adopted. However, there is no easy answer to the
question how we should prioritize genes for such an in-depth
mechanistic study despite efforts such as the TDR Targets data-
base (Aguero et al. 2008). Criteria that should be considered in the
prioritization are (1) How strong is the association between the
gene variant and autism, what is the effect size of the gene, and
how strong is the evidence? (2)What is the biological function of
the gene, which protein(s) are coded by the genes, and does the
disease gene variant lead to different levels or sorts of these
proteins? and (3) Bioinformatic analysis of the gene–protein
networks involved as well as evidence for expression of the genes
in brain regions relevant for autism seem to be important.

The issue however is complicated. Many identified genetic
risk variants have small effect sizes and/or are present in only a
minority of patients. Nonetheless, it would still be premature to
conclude that these genetic variants are not relevant for drug
discovery. It might well be that such a variant indexes a bio-
logical mechanism that is only relevant in a subgroup of pa-
tients, and that for those patients drugs affecting this mecha-
nism may provide therapeutic benefits. Further, there are ex-
amples of effective therapies that target a protein coded by risk
genes with small effect on disease risk. For example,
Ustekinumab is a monoclonal antibody that blocks interleukin
12 and has been licensed for the treatment of psoriasis.
Interestingly, the effect size of IL12B as a genetic risk factor
for psoriasis is quite small with an odds ratio of 1.5 (McInnes
et al. 2013). This example well documents why interest in
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common genetic variants does not stem from the relative risk
conferred by each variant, which is typically small (1.1–1.4 on
average), but rather in the underlying pathophysiological mech-
anisms they outline. Also, non-coding SNPs have been shown
to be pathogenic. For example, non-coding SNPs in NRG1
(Law et al. 2006) and ERBB4(Law et al. 2007) were shown to
affect the expression of a specific isoform of each gene.
This isoform specificity led to specific abnormalities of down-
stream pathways (Law et al. 2012; Mei and Xiong 2008).

Finally, genes expressed outside the brain may confer risk
to autism, among other by affecting immune mechanisms
(Careaga and Ashwood 2012; Depino 2013).

The following steps may be part of the translational pipe-
line (see also Fig. 2).

Bioinformatics—target identification and validation

It is clear that high-throughput experimental technologies
within -omics disciplines lay the data-collecting foundation
for pursuing complex biomedical research in autism.
However, merely collecting huge amounts of data does not
automatically provide new biological insights or clinical ap-
plications. For the complete translation of the wealth of data
into concrete biological knowledge and clinical practices, it
needs to be carefully analyzed (Searls 2000). However, state-
of-the-art statistical models and analyses do not yet handle
data from high-throughput experiments sufficiently well. In
order to overcome this for application in autism, it will require
(1) the development of statistical methods that are applicable

in typical situations of modeling high-throughput data, i.e.,
methods that are robust to model misspecifications, resilient to
violations of standard model assumptions, and further can
perform well on datasets with many variables/few observa-
tions and (2) the utilization of this analysis for the estimation
of the performance of treatment outcome prediction models.

Bioinformatics analysis to identify the gene–protein net-
work involved is dependent on the usage of both manual
search approaches and automated complex algorithms to fur-
ther pharmaceutical research. As such, it includes the model-
ing of molecular interactions, prediction of biological effects
of molecules, and identification of potential new drug targets
and relevant chemical classes to modulate them. With the
increasing amount of available genome sequences, there is a
high demand for genome annotation. Genome annotation is
the process of attaching biological information to sequences of
identified elements on the genome. The structural annotation
includes the identification of the gene structure and coding
regions, open reading frame prediction, and the localization of
regulatory motifs. By functional annotation biochemical and
biological functions can be assigned to genes. Automatic
annotation tools such as Galaxy are able to perform these
steps by computer analysis as a framework for interactive
large scale genome analysis which allows the integration of
user-defined tools (Goecks et al. 2010). Performing complete
genome alignments facilitates the comparison of identified
genes, products, and metabolites (Blankenberg et al. 2010).
The results can be further employed to construct kinetic
models to direct pharmaceutical engineering.

Fig. 2 Summary of the various
steps of a genetic/genomics
strategy to drug development.
Although the display suggests the
steps to occur in a sequential
manner, in practice many steps
will be taken in parallel
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Knowledge about gene relationships and the influence of
miRNA on gene regulation may be useful for in-depth analyses
of the causes and the development of complex diseases (Soifer
et al. 2007). In addition to traditional statistical evaluations of
microarray data which aim at the detection of misregulated genes
among different probes, a network-based approach
encompassing both the genetic network and its regulatory ele-
ments may be useful. In this scenario, groups of interacting genes
may be critical for the detection of conditional dependencies
between individually regulated genes.

Approaches such as Bayesian networks can be used to
derive a network of interacting genes (Vignes et al. 2011).
Based on mRNA and miRNA array datasets related to autism
targets, unknown dependencies can be identified to extend the
knowledge of regulatory networks and potential “druggable”
targets

In silico screening for new pharmaceuticals and use of support
vector machines

Novel approaches such as proteochemometrics predict the
susceptibility of known and novel compounds on new drug
targets (Hopkins 2008). The advantage of proteochemometrics,
compared to other prediction methods, is that it is based on the
chemical effects by the drugs and the chemical effects of amino
acid substitutions in the target molecule. This leads to models
which are able to afford predictions for new receptors/enzymes
and for new drugs. By combining various types of techniques
to model protein interactions which include combinations of
molecular dynamics studies of drug–target interactions,
proteochemometrics, clinical therapy outcome data, and
Bayesian statistics improves the prediction methods.
Moreover, validation of the approach by the chemical synthesis
of novel compounds which can be tested on a library of
appropriate targets in a high-throughput manner (Lipinski and
Hopkins 2004). As such, this approach enables the better
prediction of target efficacy/safety and to provide methods to
produce improved drugs for autism.

Disease-relevant extracellular or intracellular protein–pro-
tein interactions occurring at defined cellular sites have great
potential as drug targets. The selection of intracellular targets
allows for highly specific pharmacological interference
with defined cellular functions. Drugs targeting such
interactions (if expressed only in a subset of cells) are
likely to act with fewer side effects than conventional medi-
cation influencing whole cell functions, e.g., by targeting
extracelluar G-protein coupled receptors with wide receptor
expression.

Solved structures of target–protein complexes give funda-
mental insights into protein function and molecular recogni-
tion (Lipinski and Hopkins 2004). The number of structurally
solved and diverse target–protein complexes is limited, but
can be greatly extended by models generated by homology

modeling and target–protein docking. The interface areas of
complexes can be systematically screened for target pockets
that are suitable for the binding of small molecules. Binding
pockets can be transferred into a pharmacophore that can be
further applied for in silico screening of compound libraries
(Paolini et al. 2006). After a refinement step (compound
docking), high-scoring drug candidates can be identified
(Terstappen and Reggiani 2001).

The development of proteochemometrics for the analysis of
chemical compounds with wide drug target groups including
those with -omic and regulatory elements targets has been an
area of exciting innovation. Proteochemometric models for
analysis and prediction of drug metabolism, interaction of
inhibitors with target enzymes, and proteome wide models for
the interaction of chemical compounds with the proteome are
all currently in development (Fox 2010; Gustafsson et al.
2010). The challenge for statistical method development to
improve modeling of omics data for proteochemometrics lies
in the creation of approaches that perform well on datasets
with many variables and few observations.

The prediction of drug functional activity can be enabled
by the use of support vector machines (Burbidge et al. 2001).
These machine learning approaches encompass a variety of
methods which exist to classify and predict biological proper-
ties of chemical compounds, e.g., principal component
analyses, partial least squares, artificial neural networks, evo-
lutionary algorithms, and support vector machines (SVMs)
(Warmuth et al. 2003). SVMs are models for non-linear
classification and regression. They find a hyperplane with
the maximum margin separating samples of two classes of a
training set. If samples are not separable linearly, they will be
mapped to a high-dimensional “feature” space to find a hy-
perplane separating classes linearly in that space. To form a set
of meaningful descriptors for classification, different charac-
teristics of chemical compounds like size, shape, surface, ring
counts, etc. have to be computed. The utilization of chemical
databases provide classified, comprehensive datasets for the
calculation of descriptor sets enables the creation of training-
and test-sets and prediction models for compounds whose
functional role are not known, yet.

Predictive toxicology

While the development of suitable pharmaceuticals to enable
efficacy at autism core symptoms is important, it is equally
important to ensure the safety of these ligands in reducing
potentially severe side effects. Knowledge of genetic targets
and processes from bioinformatics studies can inform regard-
ing the risk associated with the chosen target but also enable
the selection of a battery of “toxic” genetic targets for predic-
tive toxicological screening (Fielden et al. 2002). As such
computational methods, tools and predictive models could
aid in chemical hazard identification and drug safety
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assessment. Using virtual screening and the use of quantitative
structure–activity relationship models, risk estimates for var-
ious types of toxicity (such as mutagenicity, carcinogenicity,
etc.) could be produced for ligands under investigation for use
in autism.

Examine functional consequences of genetic variants

Currently, there are no established methods to characterize the
involved proteins and study the functional consequence of
ASD-associated genetic variants, including disturbed tran-
scription factor binding. Typically, genetic variants are
thought to either directly affect the function of the gene, or
affect cis -regulatory elements of genes that are in close prox-
imity. However, it was also shown that due to the three-
dimensional organization of the genome, enhancers can inter-
act with far distanced promoters (Sanyal et al. 2012).
Therefore, it is crucial to integrate information on the three-
dimensional organization of the genome into the functional
analysis of genetic variants associated with ASD. This re-
quires a powerful combination of genomics and proteomics
technologies, such as unbiased, high-throughput compatible,
quantitative mass-spectrometry-based proteomics. This will
allow determining the composition and stoichiometry of
bound protein complexes and yielding valuable information
about altered molecular mechanisms.

Examine cellular and neuronal mechanisms associated
with autism risk gene variants

A promising technique is to use genetically manipulated ro-
dent primary neurons and neurons derived from human in-
duced pluripotent stem cells (iPSC) to get insight into the
mechanisms of disease associated with mutations that are also
associated with ASD. By directing iPSCs into disease-
relevant cell types, i.e., neurons, one will be able conducting
biopsy-like experiments on living tissue from patients with
ASD, with the added capacity to study the initial development
and progression of pathology. Manipulation of rodent primary
neurons is widely used for the functional study of synaptic
proteins and has revealed important insight about the synaptic
role of selected ASD-associated proteins. The use of human-
derived neurons obtained via iPSC (iNeurons) was only re-
cently established and has high promise for studying the
effects of human mutations in the appropriate genetic context
and in physiologically relevant cells (Marchetto et al. 2010).
This has even been extended to the in vitro development of a
three-dimensional organoid culture system derived from
iPSCs. This system includes various discrete brain regions
such as the cerebral cortex with different mature cortical
neuron subtypes (Lancaster et al. 2013). This setup can be
used for high-throughput screening of small-molecule modi-
fiers of cellular and synaptic properties of “autism” neurons.

In this context, it is also important to examine the function
of autism genes by measuring synaptic properties and neuro-
nal network properties (long and short range) under controlled
and standardized conditions in vitro. The global neuronal
network firing behavior of primary cultures of rodent cortical
neurons can be examined on multi-compartment multi-
electrode arrays. These studies on development and synaptic
properties of neurons will allow searching for cellular path-
ways that might explain abnormal brain function.

Finally, the neuronal consequences of specific gene vari-
ants in genes in vivo can be evaluated using rodent models.
See Kas et al. (same issue, 2013, in press) for a review of
utility, validity, and promise of animal models of autism.

a. Mouse models. Large collection of tailor-made genetical-
ly modified mice available that carry (conditional) muta-
tions in previously identified autism genes. These autism
mouse models should be tested for cognitive functions for
example by using touch-screen assays (Nithianantharajah
et al. 2013). In addition, neuroimaging protocols can be
used to test the hypothesis that autism symptoms can be
attributed to disrupted connectivity between different re-
gions of the brain in rodents (matching the human data
sets).

b. Rat models. In comparison to mice, the behavioral reper-
toire of rats is more extensive, particularly in the social
domain, which represents one of the core phenotypes of
autism. Genetic defects associated with such specific au-
tism patterns may therefore be modeled in rats in which
these genetic defects can be introduced.

Translation and validation

Once the biological and functional impact of genetic variants
has been established, the relevance of these findings need to be
translated and functionally validated in patients with ASD in
cognitive and neuroimaging paradigms. Just a couple of genes
(NRXN1 , CNTNAP2 , OXTR , AVPR1A) have been studied in
imaging genetics paradigms and shown to be associated with
alterations in circuits that mediate socio-emotional, visuo-
spatial, and language processing in ASD (Ameis and
Szatmari 2012). This asks for a systematically examination of
cognitive and neural effects of ASD genes in large clinical
cohorts and databases that include MRI and cognition data.
Also large-scale international collaborations within for example
the ENIGMA (enhancing neuroimaging genetics through
meta-analysis) consortium (enigma.Ioni.ucla.edu).

Although these various steps of the translational pipeline
have been described as to be taken sequentially (see also
Fig. 2), in practice many steps will occur in parallel. If any,
the biological plausibility of the biological mechanisms linked
to the gene variant together with successful functional valida-
tion appear to be as critical issues as to decide upon further
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intensification of the translational process and investments of
budget and manpower.

Thus far, for not any mental disorder the translational
pipeline has closed successfully the loop from a genetic/
genomics starting point up to a convincing positive clinical
phase III trial or even brought a new medicine to the market.
Many studies however are under way, see Harrison (2013) for
examples in schizophrenia. Ultimately clinically successful
cases can be found in internal medicine where beluminab
was recently approved by the FDA as a new medicine for
lupus erythematodes (SLE). The story began in 1996, when a
gene was found that was structurally homologous to tumor
necrosis factor alpha (TNFα), a key proinflammatory cyto-
kine. Subsequently, the gene's product was identified and
found to induce B cell proliferation (Moore et al. 1999).
Accordingly, the gene and its resultant protein were named
B lymphocyte stimulator (BLYS ). Then, belimumab, a human
antibody that binds to BLYS and thereby prevents it from
activating various receptors and slows B cell proliferation,
was discovered. There were, in retrospect, several critical
factors in the further development of the compound. The first
was the extreme sensitivity of the assay to even weak activi-
ties. The second was the development of mouse models of
SLE that had Blys levels tenfold above normal, and the
demonstration that inhibition of Blys reduced disease symp-
toms and improved survival in the mouse models. The third
was the observation that BLYS levels in patients with SLE
changed over time along with the waxing and waning of
disease activity. The fourth was the creation of a new clinical
end point that better reflected the complex clinical reality of
SLE as a multi-system disease (Furie et al. 2009). Finally, it
ended with a positive phase III trial (Navarra et al. 2011).

Conclusion

The current article provides a review of identified genetic
variants associated with autism, which have already generated
or are likely to generate important new leads for the develop-
ment of novel pharmaceutical compounds based on the bio-
logical knowledge directly derived from these genetic find-
ings. Consequently, this review has focused on clinical trials
of which the underlying rationale is based on biological
knowledge derived from the observation of genes associated
to autism. This does not preclude the potential of other drug
intervention trials that were not reviewed in this paper because
their rationale was not so much based on a pharmacogenetic
strategy.

To uphold the relevance of genetic findings to drug devel-
opment in autism, we reviewed several autism risk genes
converging in a limited number of genetic pathways providing
novel insights in the underlying biology. For instance, varia-
tion in TSC1 and TSC2 , as well as in PTEN en NF1 , can lead

to insufficient inhibition of the mTOR pathway. This biolog-
ical insight has been a crucial for the rationale of testing
therapeutic benefits of an mTOR inhibitor, rapamycin.
Similarly, evidence suggests that functional variation in
SHANK3 , SHANK1 , SHANK2 , NRXN1 , NLGN3 , NLGN4 ,
and potentially other autism-related genes can disrupt the
biological process of post-synaptic scaffolding, providing a
logical argument to test compounds that can enhance
synaptogenesis.

Taken together, these observations form a compelling ar-
gument that the identification of genetic risk variants and their
study to enhance the insight into the neurobiological mecha-
nisms underlying autism should remain an important priority
of the field. Currently, the etiology underlying the autisms is
still unknown in most patients. However, instances where
investigators have been successful at elucidating the underly-
ing genetic cause and how this translates into abnormal
neurodevelopment have reached in relatively few years the
stage of experimental treatments. While it is plausible that
only some of these treatments will eventually reach the clinic,
they represent paradigms of personalized molecular therapy:
its foundations are deep-rooted in human genetics uncovering
the disease gene or CNV, its functional underpinnings grow
out of genetically engineered cellular and animal models, and
its preliminary support comes from pharmacological studies
employing these animal models. This step-wise approach
holds promise to change radically in these coming years the
clinical approach to neurodevelopmental disorders.

Given the diversity of pathways involved in autistic phe-
notypes on the one hand and the costs of drug discovery and
development on the other hand, translating knowledge of
disrupted gene pathways into personalized molecular thera-
pies is not just a question of feasibility but essentially also a
matter of major investments and risk. It therefore poses a key
challenge in terms of a search for the most common setting in
which a specific target is at the cross-road of various upstream
affected gene products that are identified in linkage studies.
That specific target needs then to be “druggable,” i.e., a
possible major challenge in itself. Nevertheless, that scenario
is conceivably less impossible than we may think at first
glance. As outlined above, many different affected genes
converge on a relatively limited number of biological mech-
anisms, which in theory could normalize, correct, or stabilize
various functional pathways downstream.

Advances have been made in recent years in conditions
where autism is caused by a known genetic defect, such as
Rett Syndrome and Fragile X. These two disorders, although
evidence is not yet fully conclusive, are at least to be consid-
ered as promising illustrations of how a pharmacogenetic
strategy can be fruitfully explored. Both are examples of a
baseline shift of synaptic activity, but in opposite directions,
and as such, they may represent two etiological models un-
derlying the autistic phenotype. Their different neuronal
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activity has direct impact on synapse formation and synaptic
density. FMRP is required for suppression of synapse number
and in the absence of FMRP such as in Fragile X, an excess of
(immature) synapses are found on neurons. In contrast, animal
models of Rett syndrome (Mecp2 KO mice) have altered
synaptic transmission and plasticity, and in particular, the loss
of glutamatergic synapses is thought to explain their anoma-
lies, i.e., an absence of spines. Nonetheless, changes in syn-
aptic spine density, morphology, and function in these animal
models are complex and specific to particular brain regions.
Aberrant formation of dendritic spines is correlated with in-
creased (Fragile X) or decreased (Rett) quantity of excitatory
(glutamatergic) signaling in the brain. The observation both
increase as well as decrease in spine size and/or density can
result in an abnormal brain function, which highlights the
importance of maintaining an appropriate balance between
excitation and inhibition (E/I). Assuming that most autism
patients are somewhere on the spectrum of a dysfunctional
E/I balance, one could speculate that targeting mechanisms
restoring this balance may be an appealing treatment strategy
that could benefit to the majority of ASD patients with a
limited number of drug approaches. When considering spine
density, it should be noted that the quality of synaptic trans-
mission can be altered by factors such as glutamatergic mod-
ulators or spine morphology, whereas quantity is altered
through differences in the E/I balance.

Speeding up drug discovery through genetics/genomics
strategies requires the continuation and even intensification
of gene discovery within large scale international collabora-
tions such as the Psychiatric GWAS consortium (pgc.unc.edu)
and the Autism Genome Project. This work should include
GWAS studies and exome and whole genome sequencing
studies to identify rare variants, as well as epigenetic
genome-wide profiling. Other conditions that should be opti-
mized are the annotation of the genome and the availability of
post-mortem brain tissue of patients with autism. Expanding
and integrating analyses to multiple levels of biological infor-
mation in addition to genomics (methylomics, transcripto-
mics, proteomics, and metabolomics) will significantly en-
hance the probabilities of successfully characterizing “re-
sponders” from “non-responders,” as no single drug can con-
ceivably be beneficial to all autistic patients. Finally, assuming
that effective compounds for the treatment of autism will
become available in the near future, a parallel issue that needs
to be addressed is the challenge of clinical drug development,
or rather, the absence of any experience in this respect, for
autism. Unlike depression or schizophrenia, to date there are
no drugs on the market that treat core symptoms of autism,
implying that clinical drug development in this field will need
to be defined entirely from the start in the next few years. A
fundamental requirement to this end is an autism network
to provide a platform for professionals—clinicians and
researchers—to facilitate and enhance scientific collaboration

and facilitate consensus on various essential principles such as
translational, clinical and regulatory end-points, etc.
Currently, such a network does not exist in Europe, nor any
structure that could serve as the basis for one. To address this
need, a consortium was created within the context of the
innovative medicines initiative of the European Union. This
consortium (EU-AIMS) has defined goals to build on recent
advances to further align and support the field as well as to
build a unified platform for both pre-clinical and clinical
researchers. Therefore, the primary aims of this consortium
are (1) to increase the understanding of the underlying neuro-
biology of autism, including the identification of potential
new drug targets, (2) to set new standards in research and
clinical development to aid the drug discovery process, and
(3) to identify and develop expert clinical sites across Europe
to run clinical studies and trials and so create an European
Network for Research in Autism that provides an interactive
platform for autism professionals (Murphy and Spooren
2012).
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